117 research outputs found

    Sparse Coding on Stereo Video for Object Detection

    Get PDF
    Deep Convolutional Neural Networks (DCNN) require millions of labeled training examples for image classification and object detection tasks, which restrict these models to domains where such datasets are available. In this paper, we explore the use of unsupervised sparse coding applied to stereo-video data to help alleviate the need for large amounts of labeled data. We show that replacing a typical supervised convolutional layer with an unsupervised sparse-coding layer within a DCNN allows for better performance on a car detection task when only a limited number of labeled training examples is available. Furthermore, the network that incorporates sparse coding allows for more consistent performance over varying initializations and ordering of training examples when compared to a fully supervised DCNN. Finally, we compare activations between the unsupervised sparse-coding layer and the supervised convolutional layer, and show that the sparse representation exhibits an encoding that is depth selective, whereas encodings from the convolutional layer do not exhibit such selectivity. These result indicates promise for using unsupervised sparse-coding approaches in real-world computer vision tasks in domains with limited labeled training data

    Visualizing classification of natural video sequences using sparse, hierarchical models of cortex.

    Get PDF
    Recent work on hierarchical models of visual cortex has reported state-of-the-art accuracy on whole-scene labeling using natural still imagery. This raises the question of whether the reported accuracy may be due to the sophisticated, non-biological back-end supervised classifiers typically used (support vector machines) and/or the limited number of images used in these experiments. In particular, is the model classifying features from the object or the background? Previous work (Landecker, Brumby, et al., COSYNE 2010) proposed tracing the spatial support of a classifier’s decision back through a hierarchical cortical model to determine which parts of the image contributed to the classification, compared to the positions of objects in the scene. In this way, we can go beyond standard measures of accuracy to provide tools for visualizing and analyzing high-level object classification. We now describe new work exploring the extension of these ideas to detection of objects in video sequences of natural scenes

    Sampling binary sparse coding QUBO models using a spiking neuromorphic processor

    Full text link
    We consider the problem of computing a sparse binary representation of an image. To be precise, given an image and an overcomplete, non-orthonormal basis, we aim to find a sparse binary vector indicating the minimal set of basis vectors that when added together best reconstruct the given input. We formulate this problem with an L2L_2 loss on the reconstruction error, and an L0L_0 (or, equivalently, an L1L_1) loss on the binary vector enforcing sparsity. This yields a so-called Quadratic Unconstrained Binary Optimization (QUBO) problem, whose solution is generally NP-hard to find. The contribution of this work is twofold. First, the method of unsupervised and unnormalized dictionary feature learning for a desired sparsity level to best match the data is presented. Second, the binary sparse coding problem is then solved on the Loihi 1 neuromorphic chip by the use of stochastic networks of neurons to traverse the non-convex energy landscape. The solutions are benchmarked against the classical heuristic simulated annealing. We demonstrate neuromorphic computing is suitable for sampling low energy solutions of binary sparse coding QUBO models, and although Loihi 1 is capable of sampling very sparse solutions of the QUBO models, there needs to be improvement in the implementation in order to be competitive with simulated annealing
    • ā€¦
    corecore